Tetrahedron Letters 50 (2009) 5941-5944

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

First total syntheses and absolute configuration of rugulactone and 6(*R*)-(4'-oxopent-2'-enyl)-5,6-dihydro-2*H*-pyran-2-one

Debendra K. Mohapatra*, Pragna P. Das, D. Sai Reddy, J. S. Yadav*

Organic Chemistry Division-I, Indian Institute of Chemical Technology (CSIR), Hyderabad 500 007, India

ARTICLE INFO

Article history: Received 10 July 2009 Revised 12 August 2009 Accepted 15 August 2009 Available online 20 August 2009

Keywords: Rugulactone NF-κB inhibitors α-Pyranon-2-one Jacobsen's hydrolytic kinetic resolution Ring-closing metathesis

Nuclear factor- κ B (NF- κ B) is a transcriptional regulator that plays a key role in regulating gene expression by binding to discrete DNA sequences, known as kB elements. NF-kB can exist in homo- and hetero-dimeric forms. NF-kB binds to the target DNA (κ B-sites) and initiates gene expressions^{1,2} in immunity, stress responses, inflammation, and inhibition of apoptosis.³⁻⁷ Recent studies have shown that the p50 subunit of NF-kB complex is the one that mainly interacts with the HIV-1 long terminal repeat (LTR). Because of these functions, the irregularities, especially the activation of NF-kB has been implicated in many diseases, such as cancer^{8–11} and chronic inflammatory diseases.^{12,13} Diverse pathways activate NF-KB and control of these pathways is increasingly viewed as an approach to chemotherapy in many diseases that have an associated inflammatory component including cancer, stroke, Alzheimer's disease, and diabetes.¹⁴⁻²² Although a lot of NF- κ B inhibitors has already been reported,^{23–25} they share several problems. The strong dependence of HIV gene expression of NF-κB has made it an important and potential drug target. The drugs studied against NF-kB fall mainly into three categories:²⁶ antioxidant, phosphorylation, and degradation inhibitors and NF-KB-DNA binding inhibitors. The discovery of the role of NF-KB in the regulation of HIV-1 gene expression, $I\kappa\kappa\beta$ inhibition activity has stimulated an intensive search for the inhibitors of NF-KB.

The plant genus *Cryptocarya* is composed of a large number of species distributed throughout the tropics and subtropics.²⁷ The most common secondary metabolites reported from this genus

ABSTRACT

The first efficient total syntheses of rugulactone and 6(R)-(4'-oxopent-2'-enyl)-5,6-dihydro-2*H*-pyran-2one have been achieved in six steps with 51% and 48% overall yield, respectively. The key steps are Jacobsen's hydrolytic kinetic resolution (HKR), Horner–Wadsworth–Emmons (HWE) homologation, and ring-closing metathesis reaction.

© 2009 Elsevier Ltd. All rights reserved.

are alkaloids, flavonoids, and α -pyrones.^{28–30} Among them, the 6substituted 5,6-dihydro-2*H*-pyran-2-ones are structural features of many natural products and display a broad range of biological activities.³¹ Rugulactone (**1**) belongs to a family of *Cryptocarya* α pyrone containing natural products isolated from *Citrus rugulosa* extract that exhibit up to 5-fold induction of IKKβ at 25 µg/mL.³² Another similar molecule 6(*R*)-(4'-oxopent-2'-enyl)-5,6-dihydro-2*H*-pyran-2-one (**2**) has been isolated from Piper species (*Piper reticulatum* L.) occurring in Trinidad³³ (Fig. 1).

6(R)-(4'-oxopentyl)-5,6-dihydro-2H-pyran-2-one (2)

Figure 1. Structures of rugulactone (**1**) and 6(*R*)-(4'-oxopent-2'-enyl)-5,6-dihydro-2*H*-pyran-2-one (**2**).

^{*} Corresponding authors. Tel.: +91 40 27193128; fax: +91 40 27160512 (D.K.M.). *E-mail addresses*: mohapatra@iict.res.in, dkm_77@yahoo.com (D.K. Mohapatra).

^{0040-4039/\$ -} see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.08.028

As a part of ongoing program in exploring ring-closing metathesis for bioactive natural lactone synthesis,³⁴ and with the uncertainty in the proposed structure in mind, we set out to determine the structure of **1** and **2**, including absolute configuration, by means of total syntheses.

The retro-synthesis envisaged based on ring-closing metathesis for the syntheses of **1** and **2** is shown in Scheme 1. As indicated, compound **3** could be obtained from **4** following a Horner–Wadsworth–Emmons reaction, which can be traced back from **5**. For the generation of C6 stereocenter, we relied on Jacobsen's hydrolytic kinetic resolution.

The synthesis of diene **4** began with the epoxide **5**,³⁵ which in turn was prepared by Jacobsen's hydrolytic kinetic resolution $(HKR)^{36}$ of the racemate **5a** (Scheme 2) using (R,R)-(salen)Co^{III}(OAc) catalyst (**6**) to obtain the (*R*)-MPM-ethyl oxirane **5**³⁷ as a single isomer { $[\alpha]_D^{25}$ +10.6 (*c* 1.2, CHCl₃); lit.³⁵ $[\alpha]_D^{25}$ -10.4 (*c* 1.2, CHCl₃); lit.³⁸ $[\alpha]_D^{25}$ -13.1 (*c* 1.2, CHCl₃) for S-isomer}. Epoxide **5** was treated with vinyl magnesium bromide in the presence of Cul to afford the homo-allyl alcohol 8 in excellent yield. The spectral and analytical data { $[\alpha]_D^{25}$ –6.2 (*c* 0.6, CHCl₃); lit.³⁹ $[\alpha]_D^{20}$ –5.8 (c 1.37, CHCl₃) (87% ee)} were in good agreement with the literature values. The C6 stereogenic center was further confirmed by modified Mosher's method.⁴⁰ Alcohol **8** was esterified with acryloyl chloride in the presence of Et₃N and a catalytic amount of DMAP to afford the acryloyl ester $\mathbf{4}^{41}$ in 92% yield. With substantial amounts of **4** in hand, we proceeded with the synthesis of **1** and **2**. Thus, deprotection of the PMB group (DDQ, CH₂Cl₂, H₂O),⁴² followed by oxidation of the primary hydroxyl group with Dess-Martin periodinane (DMP)⁴³ afforded aldehyde **10** in 85.4% yield over two steps. Engagement of the resulting aldehyde 10 in a Horner-Wadsworth-Emmons homologation with dimethyl (2-oxo-4-phenylbutyl) phosphonate⁴⁴ in presence of sodium bis(trimethylsilvl)-amide gave the α , β -unsaturated ketone **3a** in 87% yield. Similarly, treatment of aldehyde **10** with dimethyl 2-oxopropylphosphonate in the presence of sodium bis(trimethylsilyl)amide afforded **3b** in 84% yield. Finally, exposure of **3a**⁴⁵ and **3b**⁴⁶ to Grubbs' first generation catalyst⁴⁷ (10 mol %) in refluxing CH_2Cl_2 afforded the rugulactone (1)⁴⁸ and 6(R)-(4'-oxopent-2'enyl)-5,6-dihydro-2*H*-pyran-2-one $(\mathbf{2})^{49}$ in 82% and 80% vield.

Scheme 1. Retrosynthetic analysis of rugulactone (1) and 6(R)-(4'-oxopent-2'-enyl)-5,6-dihydro-2*H*-pyran-2-one (2).

Scheme 2. Reagents and conditions: (a) Vinylmagnesium bromide, Cul, THF, 0 °C, 2 h, 91%; (b) acryloyl chloride, Et₃N, DMAP, CH₂Cl₂, 12 h, 92%; (c) DDQ, CH₂Cl₂, H₂O, rt, 1 h, 89%; (d) DMP, CH₂Cl₂, 0 °C, 2 h, 96%; (e) NaHMDS, phosphonate, 0 °C, 12 h, 87% and 84%; (f) **7**, CH₂Cl₂, reflux, 12 h, 82% and 80%.

respectively. The analytical and spectral data (Fig. 2) of our synthetic products were in good agreement with the published data. 32,33

In conclusion, total syntheses of the natural lactones, rugulactone (**1**) and 6(R)-(4'-oxopent-2'-enyl)-5,6-dihydro-2H-pyran-2one (**2**) have been achieved in a highly efficient and concise way utilizing Jacobsen's hydrolytic kinetic resolution, Horner–Wadsworth–Emmons homologation, and ring-closing metathesis as the key reactions. Sizeable amounts of **1** and **2** have thus been made available for further pharmacological studies. Furthermore, applying the same protocol, introduction of variety of truncated side chains and its effects on NF- κ B activities are under progress in our laboratory which will be published in due course.

Acknowledgment

P.P.D. and D.S.R. thank CSIR, New Delhi, India, for the financial assistance in the form of fellowships.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.08.028.

References and notes

- Phelps, C. B.; Sengchanthalangsy, L. L.; Melek, S.; Ghosh, G. J. Biol. Chem. 2000, 275, 24392.
- Berkowitz, B.; Huang, D.-B.; Chen-Park, F. E.; Sigler, P. B.; Ghosh, G. J. Bio. Chem. 2002, 277, 24694.
- 3. Sen, R.; Baltimore, D. Cell 1986, 46, 705.
- 4. Ghosh, S.; May, M. J.; Kopp, E. B. Annu. Rev. Immunol. 1998, 16, 225.
- 5. Pahl, H. L. Oncogene 1999, 18, 6853.

Figure 2. ¹H NMR spectra of rugulactone (1): natural (top) (500 MHz); and synthetic (bottom) (500 MHz).

- 6. Karin, M.; Lin, A. Nat. Immunol. 2002, 3, 221.
- 7. Bonizzi, G.; Karin, M. Trends Immunol. 2004, 25, 280.
- 8. Luo, J. L.; Kamata, H.; Karin, M. J. Clin. Invest. 2005, 115, 2625.
- 9. Karin, M. Nature 2006, 441, 431.
- 10. Sethi, G.; Sung, B.; Aggarwal, B. B. Exp. Biol. Med. (Maywood) 2008, 233, 21.
- 11. Coussens, L. M.; Werb, Z. Nature 2002, 420, 860.
- 12. Barnes, P. J.; Karin, M. N. Engl. J. Med. 1997, 336, 1066.
- Visekruna, A.; Joeris, T.; Seidel, D.; Kroesen, A.; Loddenkemper, C.; Zeitz, M.; Kaufmann, S. H.; Schimdt Ullrich, R.; Steinhoff, U. *J. Clin. Invest.* **2006**, *116*, 3195.
 Yamamoto, Y.; Gaynor, R. B. *J. Clin. Invest.* **2001**, *107*, 135.
- Kaltschmidt, B.; Widera, D.; Kaltschmidt, C. Biochim. Biophys. Acta 2005, 1745, 287.
- Viatour, P.; Merville, M-P.; Bours, V.; Chariot, A. Trends Biochem. Sci. 2005, 30, 43.
- 17. Kumar, A.; Takada, Y.; Boriek, A. M.; Aggarwal, B. B. J. Mol. Med. 2004, 82, 434.
- 18. Hiscott, J.; Kwon, H.; Genin, P. J. Clin. Invest. 2001, 107, 143.
- 19. Barkett, M.; Gilmore, T. Oncogene 1999, 18, 6910.
- 20. Karin, M.; Greten, F. R. Nat. Rev. Immunol. 2005, 5, 749.
- Herrmann, O.; Baumann, B.; de Lorenzi, R.; Muhammad, S.; Zhang, W.; Kleesiek, J.; Malfertheiner, M.; Kohrmann, M.; Potrovita, I.; Maegele, I.; Beyer, C.; Burke, J. R.; Hasan, M. T.; Pasparakis, M.; Schwaninger, M. *Nat. Med.* 2005, *11*, 1322.
- 22. Schmitz, M. L.; Mattioli, I.; Buss, H.; Kracht, M. ChemBioChem 2004, 5, 1348.
- 23. Epinat, J. C.; Gilmore, T. D. Oncogene 1999, 18, 6896.

- 24. Gilmore, T. D.; Herscovitch, M. Oncogene 2006, 25, 6887.
- 25. Olivier, S.; Robe, P.; Bours, V. Biochem. Pharmacol. 2006, 72, 1054.
- 26. Pande, V.; Ramos, M. J. Curr. Med. Chem. 2003, 10, 1603.
- 27. Rali, T.; Wossa, S. W.; Leach, D. N. Molecules 2007, 12, 149.
- Toribio, A.; Bonfils, A.; Delannay, E.; Prost, E.; Harakat, D.; Henon, E.; Richard, B.; Litaudon, M.; Nuzillard, J.-M.; Renault, J.-H. Org. Lett. 2006, 8, 3825.
- 29. Davies-Coleman, M. T.; Rivett, D. E. A. Prog. Chem. Org. Nat. Prod. 1989, 55, 1.
- 30. Cavalheiro, A. J.; Yoshida, M. Phytochemistry 2000, 53, 811.
- 31. Murga, J.; García-Fortanet, J.; Carda, M.; Marco, J. A. J. Org. Chem. **2004**, 69, 7277. and references cited therein.
- Meragelman, T. L.; Scudiero, D. A.; Davis, R. E.; Staudt, L. M.; McCloud, T. G.; Cardellina, J. H., II; Shoemaker, R. H. J. Nat. Prod. 2009, 72, 336.
- 33. Maxwell, A.; Dabideen, D.; Reynolds, W. F.; McLean, S. J. Nat. Prod. 1998, 61, 815.
 44. (b) Maharatara D. Ku Calara C. Parada A. P. Ku Calara C. P. C.
- (a) Mohapatra, D. K.; Sahoo, G.; Ramesh, D. K.; Rao, J. S.; Sastry, G. N. *Tetrahedron Lett.* **2009**, *50*, 5636; (b) Mohapatra, D. K.; Dash, U.; Naidu, P. R.; Yadav, J. S. *Synlett* **2009**, *13*, 2129.; (c) Mohapatra, D. K.; Ramesh, D. K.; Giardello, M. A.; Chorghade, M. S.; Gurjar, M. K.; Grubbs, R. H. *Tetrahedron Lett.* **2007**, *48*, 2621; (d) Gurjar, M. K.; Karmakar, S.; Mohapatra, D. K. *Tetrahedron Lett.* **2004**, *45*, 4525.
- 35. Marshall, J. A.; Schaaf, G.; Nolting, A. Org. Lett. 2005, 7, 5331.
- Nielsen, L. P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 1360.

- Analytical and spectral data of 5: [α]²⁵_D +10.6 (c 1.08, CHCl₃); ¹H NMR (300 MHz, CDCl₃) 7.27 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 4.46 (s, 2H), 3.80 s, 3H), 3.59 (t, J = 7.2 Hz, 2H), 3.06 (m, 1H), 2.78 (t, J = 4.7 Hz, 1H), 2.52 (m, 1H), 1.9 (m, 1H), 1.76 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) 159.1, 130.28, 129.2, 113.8, 72.7, (6.7, 55.2, 47.1, 32.9; IR (neat): 3495, 2928, 2857, 1611, 1512, 1247, 1097 cm⁻¹; MS (ES+, 3.99 × 10⁶) m/z 209 [M+1]. Gaunt, M. J.; Jessiman, A. S.; Orsini, P.; Hook, D. F.; Tanner, H. R.; Ley, S. V. Org.
- 38 Lett. 2003, 5, 4819.
- 39 Li, D.-R.; Zhang, D.-H.; Sun, C.-Y.; Zhang, J.-W.; Yang, L.; Chen, J.; Liu, B.; Su, C.; Zhou, W.-S.; Lin, G.-Q. Chem. Eur. J. 2006, 12, 1185.
- (a) Ohtani, I.; Kusumi, J.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 40 4092; (b) Yoshido, W. Y.; Bryan, P. J.; Baker, B. J.; McClintock, J. B. J. Org. Chem. 1995. 60. 780.
- 41. Analytical and spectral data of **4**: $[\alpha]_D^{25}$ +20.8 (c 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) 7.19 (d, J = 8.7 Hz, 2H), 6.81 (d, J = 8.7 Hz, 2H), 6.35 (m, 2H), 6.07 (m, 2H), 6.81 (m, 2H), 6.81 (m, 2H), 6.85 (m, 2H), 6.81 (m, 2H), 6.81 (m, 2H), 6.85 (m, 2H), 6.81 (m, 2H 1H), 3.78 (s, 3H), 3.54–3.39 (m, 2H), 2.38–2.33 (m, 2H), 1.89–1.83 (m, 2H); 30 NMR (75 MHz, CDCl₃), 165.7, 159.1, 133.3, 130.4, 129.2, 128.6, 117.6, 113.7, 72.7, 70.9, 66.1, 55.2, 38.8, 33.7; IR (neat): 3074, 2928, 2860, 1722, 1613, 1513, 1406, 1248, 1194, 1094, 1039 cm⁻¹; MS (ES+, 3.39×10^5) m/z 308 [M+NH₄]⁺, 313 [M+Na]⁺.
- Oikawa, Y.; Yushioka, T.; Yonemitsu, O. Tetrahedron Lett. 1982, 23, 885. 42
- Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277. 43.
- 44. Stjernschantz, J.; Resul, B. Drugs Future 1992, 17, 691.
- Analytical and spectral data of $3a: |z|_D^{25} -6.0$ (c 0.3, CHCl₃); ¹H NMR (300 MHz, CDCl₃) 7.32–7.26 (m, 3H), 7.21–7.18 (m, 2H), 6.74 (m, 1H), 6.39 (dd, *J* = 1.4, 17.2 Hz, 1H), 6.17-6.04 (m, 2H), 5.83 (dd, J = 1.2, 10.2 Hz, 1H), 5.74 (m, 1H), 5.14–5.06 (m, 3H), 2.97–2.82 (m, 4H), 2.56–2.47 (m, 2H), 2.37 (t, J = 6.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) 199.1, 165.5, 141.6, 132.8, 132.7, 131.1, 128.5, 128.3, 126.1, 118.5, 71.7, 41.7, 38.1, 36.5, 30.0, 29.7; IR (neat): 3429, 3028, 2921, 2852, 1723, 1674, 1634, 1406, 1268, 1191, 1048 cm⁻¹; MS (ESI+, 2.46×10^5) *m/z* 299 [M+1], 316 [M+NH₄]⁺, 321 [M+Na]⁺.

- Analytical and spectral data of **3b**: [α]_D²⁵ -7.2 (c 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) 6.73 (m, 1H), 6.40 (d, *J* = 17.2 Hz, 1H), 6.14–6.05 (m, 2H), 5.84 (d, J = 10.4 Hz, 1H), 5.75 (m, 1H), 5.14 (d, J = 3.9, 2H), 5.10 (s, 1H), 2.58–2.51 (m, 2H), 2.40 (t, J = 6.4 Hz, 2H), 2.25 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) 198.2, 165.5, 142.5, 133.2, 132.7, 131.1, 128.3, 118.6, 71.6, 38.2, 36.6, 26.9, IR (neat): 3433, 2924, 2854, 1723, 1676, 1633, 1407, 1262, 1191, 1048 cm⁻¹; MS (ES+, 1.76 \times 10⁵) m/z 231 [M+Na]⁺.
- (a) Gradillas, A.; Pérez-Castells, J. Angew. Chem., Int. Ed. 2006, 45, 6086; (b) 47. Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490; (c) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199; (d) Prunet, J. Angew. Chem., Int. Ed. 2003, 42, 2826; (e) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18; (f) Furstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012; (g) Maier, M. E. Angew. Chem., Int. Ed. 2000, 39, 2073; (h) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413; (i) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371; For a discussion of strategic advantages related to RCM, see: (j) Furstner, A. Synth. Lett. 1999, 1523.
- 48. Analytical and spectral data of **1**: $[\alpha]_D^{25}$ –46.5 (c 0.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃) 7.28 (m, 3H), 7.20 (m, 2H), 6.88 (ddd, J = 3.7, 4.5, 8.9 Hz, 1H), 6.80 (dt, (J=74, 15.8 Hz, 1H), 6.20 (d, J=15,8, 1H), 6.05 (d, J= 9.0 Hz, 1H), 4.55 (d, J=6.8, 13.7 Hz, 1H), 2.93 (m, 2H), 2.91 (m, 2H), 2.64 (m, 2H), 2.33 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) 199.0, 163.7, 144.6, 141.0, 140.0, 133.5, 128.5, 128.4, 126.1, 121.5, 76.1, 41.7, 29.9, 28.9; IR (neat): 3448, 2922, 2852, 1720, 1671, 1632, 1457, 1382, 1247, 1042 cm⁻¹; MS (ES+, 1.21×10^6) m/z 271 [M+1], 288 [M+NH₄]⁺, 293 [M+Na]⁺.
- [MITMIA], 255 [MITMA]. Analytical and spectral data of **2**: $[\alpha]_{0}^{25}$ –35.4 (c 1.4, CHCl₃); ¹H NMR (300 MHz, CDCl₃) 6.94–6.71 (m, 2H), 6.19 (d, *J* = 16.1, 1H), 6.06 (dt, *J* = 1.7, 9.8 Hz, 1H), 49. 4.62 (m, 1H), 2.71-2.64 (m, 2H), 2.41-2.36 (m, 2H), 2.28 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) 198.1, 163.7, 144.7, 140.8, 134.3, 121.4, 76.1, 37.5, 29.0, 27.0; IR (neat): 3446, 2923, 2853, 1719, 1673, 1631, 1425, 1383, 1248, 1149, 1042 cm⁻¹; MS (ES+, 1.05×10^6) m/z 181 [M+1], 198 [M+NH₄]⁺, 203 [M+Nal⁺.